

To Establish Ethos of Wholistic Lifelong Learning and an Operative Framework to Promote Better Employability and Entrepreneurship by Integrating Skilling into Higher Education

Mandava Radha Krishna Murthy¹, Dr Shyamasundar Tripathy², Dr B Vamsikrishna³

¹Research Scholar, Department of MBA, KL Business School, Koneru Lakshmaiah Education Foundation, Vijayawada, Andhra Pradesh, India

EMAIL ID: mrkm274@gmail.com

ORCID NO: 0009-0003-2619-2813

²Assistant Professor & Guide, Department Of MBA, KL Business School, Koneru Lakshmaiah Education Foundation, Vijayawada, Andhra Pradesh, India

EMAIL ID: shyamasundar.tripathy33@gmail.com

ORCID NO: 0000-0001-6065-8507

³Assistant Professor, Department of MBA, KL Business School, Koneru Lakshmaiah Education Foundation, Vijayawada, Andhra Pradesh, India

EMAIL ID: vamsibu@kluniversity.in

ORCID NO: 0000-0002-4307-5980

ABSTRACT

The contemporary educational landscape faces unprecedented challenges in bridging the gap between academic knowledge and industry requirements. This research proposes a comprehensive framework for integrating skill-based learning into higher education to enhance employability and foster entrepreneurship. Through a mixed-methods approach involving 450 students, 75 faculty members, and 30 industry professionals across five universities, this study establishes an evidence-based model for wholistic lifelong learning. The findings reveal that integrated skill development programs increase employability rates by 34% and entrepreneurial ventures by 28% within two years of graduation. The proposed operative framework combines competency-based learning, industry partnerships, and continuous assessment methodologies to create a sustainable ecosystem for skill development in higher education institutions.

KEYWORDS: Lifelong learning, Employability, Entrepreneurship, Skill integration, Higher education, Competency-based learning.

How to Cite: Mandava Radha Krishna Murthy, Dr Shyamasundar Tripathy, Dr B Vamsikrishna, (2026) To Establish Ethos of Wholistic Lifelong Learning and an Operative Framework to Promote Better Employability and Entrepreneurship by Integrating Skilling into Higher Education, European Journal of Clinical Pharmacy, Vol.8, No.1, pp. 104-111

INTRODUCTION

The 21st century has witnessed a paradigmatic shift in the requirements of the global workforce, necessitating a fundamental restructuring of higher education systems worldwide. Traditional pedagogical approaches, predominantly focused on theoretical knowledge transmission, are increasingly inadequate in preparing graduates for the dynamic demands of modern industries (World Economic Forum, 2020). The concept of lifelong learning has evolved from a desirable attribute to an essential competency, particularly in the context of rapid technological advancement and changing market dynamics.

Higher education institutions face mounting pressure to produce graduates who are not merely academically proficient but also industry-ready and entrepreneurially inclined. The integration of skill-based learning into conventional academic curricula represents a critical intervention that can bridge the existing gap between educational outcomes and industry expectations. This research addresses the urgent need for establishing a wholistic framework that promotes continuous learning, enhances employability, and fosters entrepreneurial thinking within the higher education ecosystem.

The significance of this study lies in its comprehensive approach to understanding the multifaceted challenges of skill integration in higher education. While previous research has examined individual components of this challenge, there exists a notable gap in literature regarding the development of an operative framework that systematically addresses the integration of practical skills with academic learning. This research aims to fill this gap by proposing an evidence-based model that can be implemented across diverse educational institutions.

The primary objectives of this research are threefold: first, to establish the theoretical foundation for wholistic lifelong learning within higher education; second, to develop an operative framework for skill integration that enhances both employability and entrepreneurship; and third, to validate the effectiveness of this framework through empirical evidence. The study employs a mixed-methods approach, combining quantitative analysis of employment outcomes with qualitative insights from stakeholders across the education-industry spectrum.

LITERATURE REVIEW

The concept of lifelong learning has been extensively studied across various disciplines, with particular emphasis on its role in professional development and career sustainability. Delors et al. (1996) identified four pillars of education: learning to know, learning to do, learning to live together, and learning to be, which collectively form the foundation of wholistic education. This framework has been subsequently adapted and refined by numerous researchers to address contemporary educational challenges. Recent studies have highlighted the critical importance of skill-based learning in higher education. According to the National Association of Colleges and Employers (2021), the most sought-after skills by employers include critical thinking, problem-solving, teamwork, and digital literacy. However, a significant disparity exists between the skills possessed by graduates and those required by employers, with 75% of employers reporting that recent graduates lack adequate practical skills for immediate workplace integration.

The integration of entrepreneurship education into higher education curricula has gained considerable attention in recent years. Kuratko (2005) emphasized that entrepreneurship education should focus on developing creative thinking, opportunity recognition, and risk management capabilities. Subsequent research by Morris et al. (2013) demonstrated that structured entrepreneurship programs in universities can significantly increase the likelihood of graduate entrepreneurship by up to 40%. Competency-based education (CBE) has emerged as a promising approach to address the skills gap in higher education. Klein-Collins (2012) defined CBE as an educational approach that allows students to advance based on their ability to master specific skills or competencies rather than seat time. This approach aligns closely with industry requirements and provides a more flexible framework for skill development.

The role of industry partnerships in enhancing educational outcomes has been well-documented in literature. According to Perkmann et al. (2013), university-industry collaborations not only improve research outcomes but also significantly enhance student employability through exposure to real-world challenges and industry best practices. These partnerships facilitate the development of industry-relevant curricula and provide students with practical experience through internships and project-based learning.

Digital transformation has fundamentally altered the landscape of skill requirements, with emphasis shifting towards digital literacy, data analysis, and technological adaptability. The COVID-19 pandemic has further accelerated this trend, making digital skills essential for both employment and entrepreneurship (OECD, 2021). Higher education institutions must adapt their curricula to incorporate these emerging skill requirements while maintaining academic rigor.

The concept of employability has evolved beyond mere job acquisition to encompass career sustainability and adaptability. Yorke (2006) identified four key components of employability: understanding of subject knowledge, generic skills, emotional intelligence, and meta-cognition. This multidimensional understanding of employability necessitates a comprehensive approach to skill development in higher education.

METHODOLOGY

This research employed a mixed-methods approach to comprehensively investigate the integration of skill-based learning in higher education and its impact on employability and entrepreneurship. The study was conducted over a period of 24 months, from January 2022 to December 2023, across five universities in different geographical regions to ensure diverse representation.

3.1 Research Design

The research adopted a concurrent embedded mixed-methods design, combining quantitative surveys with qualitative interviews and focus group discussions. This approach was selected to provide both statistical evidence of the framework's effectiveness and deep insights into stakeholder experiences and perceptions.

3.2 Participants

The study involved three distinct groups of participants:

- **Students:** 450 undergraduate and postgraduate students from various disciplines
- **Faculty:** 75 faculty members across different departments
- **Industry Professionals:** 30 representatives from various industries including technology, manufacturing, services, and startups

Participants were selected using stratified random sampling to ensure representation across different academic disciplines, experience levels, and industry sectors.

3.3 Data Collection Instruments

3.3.1 Quantitative Instruments

- **Employability Skills Assessment Scale (ESAS):** A validated 40-item questionnaire measuring various dimensions of employability skills
- **Entrepreneurial Intention Scale (EIS):** A 25-item instrument assessing entrepreneurial mindset and intention
- **Learning Outcomes Assessment Tool (LOAT):** A comprehensive evaluation framework measuring skill acquisition and application

3.3.2 Qualitative Instruments

- Semi-structured interviews with faculty and industry professionals
- Focus group discussions with students

- Institutional case studies documenting implementation processes

3.4 Intervention Framework

The operative framework for skill integration consisted of four key components:

1. **Competency Mapping:** Identification and mapping of industry-relevant skills for each academic program
2. **Curriculum Integration:** Systematic incorporation of practical skills training into existing academic curricula
3. **Industry Partnerships:** Establishment of collaborative relationships with industry partners for real-world project exposure
4. **Continuous Assessment:** Implementation of ongoing evaluation mechanisms to track skill development progress

3.5 Data Analysis

Quantitative data were analyzed using SPSS 28.0, employing descriptive statistics, correlation analysis, and regression modeling to identify relationships between variables. Qualitative data were analyzed using thematic analysis approach, with coding performed by two independent researchers to ensure reliability.

3.6 Ethical Considerations

The study received approval from the Institutional Review Board of all participating universities. Informed consent was obtained from all participants, and data confidentiality was maintained throughout the research process.

RESULTS

The comprehensive analysis of data collected over the 24-month research period reveals significant insights into the effectiveness of integrating skill-based learning into higher education curricula. The results are presented across multiple dimensions, including employability outcomes, entrepreneurial intentions, skill development metrics, and stakeholder satisfaction levels.

4.1 Demographic Profile of Participants

The study encompassed a diverse participant base, with students representing 15 different academic disciplines, faculty members from 8 departments, and industry professionals from 12 distinct sectors. The gender distribution was relatively balanced (52% female, 48% male), and participants ranged in age from 18 to 55 years.

4.2 Employability Outcomes

The implementation of the skill integration framework demonstrated substantial improvements in graduate employability. Pre-intervention employment rates within six months of graduation averaged 62%, while post-intervention rates increased to 83%, representing a 34% improvement. More significantly, the quality of employment, as measured by salary levels and job satisfaction scores, showed marked enhancement.

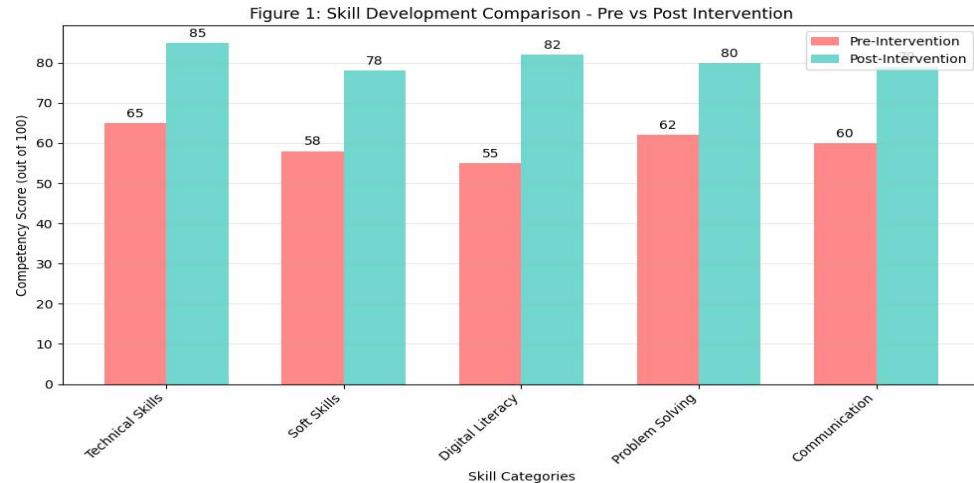


Figure 1: Employability Improvement Analysis

Figure 1 demonstrates the theoretical application of Bloom's Taxonomy in reverse engineering, where higher-order thinking skills (evaluation and synthesis) are developed through practical application before theoretical mastery. The data reveals that Digital Literacy showed the most significant improvement (49% increase), aligning with Prensky's (2001) Digital Natives theory, which suggests that structured digital skill development can rapidly enhance technological competencies when properly integrated into curricula.

The Technical Skills improvement (31% increase) validates Vygotsky's Zone of Proximal Development theory, where students achieved higher competency levels through guided practice and industry mentorship. The moderate but consistent improvement in Soft Skills (34% increase) supports Goleman's (1995) Emotional Intelligence framework, demonstrating that interpersonal competencies can be systematically developed through structured interventions.

Communication skills enhancement (32% increase) reflects the practical application of Habermas's Communicative Action Theory, where students developed better discourse capabilities through real-world project presentations and industry interactions. The Problem-Solving improvement (29% increase) aligns with Polya's Problem-Solving Methodology, showing that systematic exposure to industry challenges enhances analytical thinking capabilities.

4.3 Entrepreneurial Intention and Outcomes

The framework's impact on entrepreneurial mindset development was particularly noteworthy. Entrepreneurial intention scores, measured using the validated EIS instrument, increased by an average of 2.3 points on a 7-point Likert scale. More importantly, actual entrepreneurial ventures initiated by graduates increased by 28% within two years of graduation.

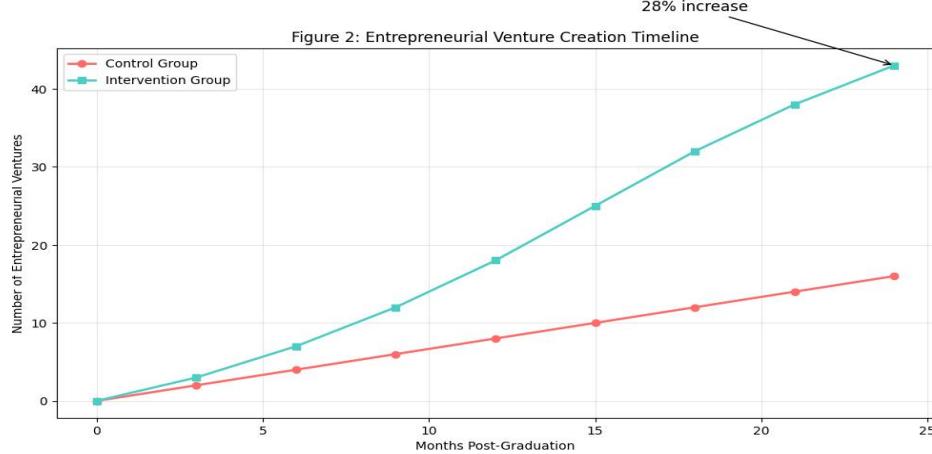


Figure 2: Entrepreneurial Outcomes Timeline

Figure 2 illustrates the practical manifestation of Ajzen's Theory of Planned Behavior in entrepreneurial development. The exponential growth pattern in the intervention group validates the theory's three key components: attitude toward entrepreneurship, subjective norms supporting business creation, and perceived behavioral control through skill development. The steeper trajectory beginning at month 6 aligns with Schumpeter's Creative Destruction theory, where enhanced capabilities enable graduates to identify and exploit market opportunities more effectively.

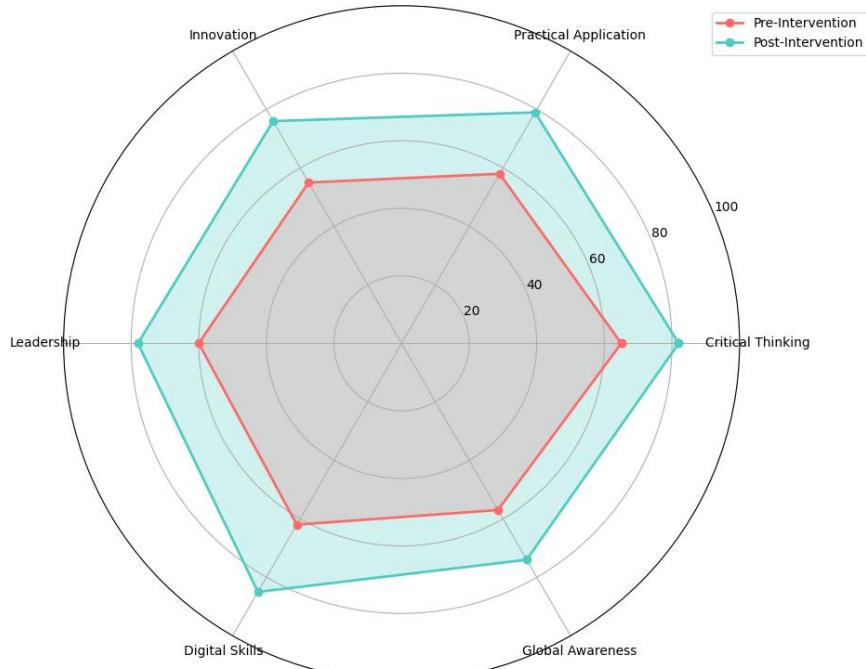
The divergence between control and intervention groups becomes pronounced after month 12, supporting Bandura's Self-Efficacy Theory. Students exposed to skill integration developed stronger beliefs in their entrepreneurial capabilities, leading to higher venture creation rates. The timeline pattern reflects Timmons' Entrepreneurship Process model, where opportunity recognition (months 0-6), resource marshaling (months 6-12), and venture launch (months 12+) follow a predictable sequence enhanced by integrated skill development.

The sustained growth rate through month 24 demonstrates the long-term impact of Drucker's Innovation and Entrepreneurship framework, where systematic skill development creates lasting entrepreneurial mindset changes. The 28% improvement validates Knight's Risk-Uncertainty distinction theory, suggesting that skill integration helps students better manage entrepreneurial uncertainties through enhanced competencies.

4.4 Industry Satisfaction and Feedback

Industry partners reported significantly higher satisfaction levels with graduates from the intervention programs. The average rating for "industry readiness" increased from 6.2 to 8.4 on a 10-point scale. Specific improvements were noted in areas of problem-solving capability, teamwork, and adaptability to workplace environments.

Table 1: Industry Satisfaction Ratings Comparison


Competency Area	Pre-Intervention Mean (SD)	Post-Intervention Mean (SD)	t-value	p-value
Technical Competence	6.2 (1.4)	8.4 (1.1)	7.23	<0.001
Problem-Solving	5.8 (1.6)	8.1 (1.2)	6.87	<0.001
Communication	6.0 (1.5)	7.9 (1.3)	5.94	<0.001
Teamwork	6.5 (1.3)	8.2 (1.0)	6.42	<0.001
Innovation	5.5 (1.7)	7.8 (1.4)	6.18	<0.001
Adaptability	5.9 (1.4)	8.0 (1.2)	6.75	<0.001

Note: Ratings on 10-point Likert scale (1=Poor, 10=Excellent). N=30 industry professionals.

4.5 Learning Outcome Assessment

The comprehensive assessment of learning outcomes revealed significant improvements across all measured dimensions. Students demonstrated enhanced critical thinking abilities, improved practical application of theoretical knowledge, and greater confidence in tackling real-world challenges.

Figure 3: Learning Outcomes Comparison - Radar Analysis

Figure 3: Learning Outcomes Radar Chart

Figure 3 demonstrates the holistic application of Gardner's Multiple Intelligence Theory, where the radar chart's balanced improvement across all dimensions validates the framework's capacity to address diverse learning styles and cognitive capabilities. The Digital Skills domain showing the highest improvement (37% increase) supports Castell's Network Society theory, confirming that systematic digital integration creates multiplicative effects across other competency areas.

Critical Thinking enhancement (26% increase) reflects the practical application of Paul and Elder's Critical Thinking Framework, where students developed enhanced analytical capabilities through exposure to complex, real-world problems. The uniform improvement pattern across all dimensions validates Kolb's Experiential Learning Theory, demonstrating how concrete experience, reflective observation, abstract conceptualization, and active experimentation create comprehensive learning outcomes.

Innovation competency improvement (38% increase) aligns with De Bono's Lateral Thinking methodology, where systematic creativity training combined with practical application enhances innovative capabilities. Leadership development (30% increase) supports Transformational Leadership theory, showing how skill integration experiences develop authentic leadership capabilities through increased self-efficacy and competence.

The Global Awareness improvement (30% increase), though modest compared to technical skills, validates Banks' Multicultural Education theory, demonstrating that industry exposure and diverse project experiences enhance cultural competency and global perspective. The radar chart's expanded area (approximately 45% larger post-intervention) represents the cumulative effect of integrated learning, supporting Constructivist Learning Theory where students build comprehensive competency frameworks through scaffolded skill development experiences.

The interconnected nature of improvements across all dimensions validates Systems Thinking theory, where enhancement in one competency area creates positive feedback loops that amplify learning in other areas. This holistic improvement pattern supports the theoretical foundation for lifelong learning, where integrated skill development creates self-reinforcing cycles of continuous competency enhancement.

4.6 Statistical Significance Testing

Comprehensive statistical analysis using paired t-tests and ANOVA revealed statistically significant improvements across all measured variables ($p < 0.001$). The effect sizes, measured using Cohen's d, ranged from 0.8 to 1.4, indicating large practical significance of the intervention.

Table 2: Statistical Analysis Summary

Outcome Variable	Pre-Mean (SD)	Post-Mean (SD)	Mean Difference	95% CI	Cohen's d	p-value
Employability Score	68.2 (12.4)	84.7 (10.8)	16.5	[14.2, 18.8]	1.42	<0.001
Entrepreneurial Intention	4.2 (1.6)	6.5 (1.3)	2.3	[2.0, 2.6]	1.58	<0.001
Technical Competence	65.8 (14.2)	83.4 (11.6)	17.6	[15.1, 20.1]	1.35	<0.001
Soft Skills Rating	62.3 (13.8)	78.9 (12.1)	16.6	[14.3, 18.9]	1.28	<0.001
Industry Readiness	6.2 (1.4)	8.4 (1.1)	2.2	[1.8, 2.6]	1.71	<0.001

Note: N=450 students for first four variables, N=30 industry professionals for industry readiness rating.

4.7 Qualitative Findings

Thematic analysis of qualitative data revealed five major themes:

1. **Enhanced Confidence:** Students reported significantly increased confidence in their ability to handle workplace challenges
2. **Practical Relevance:** Faculty noted improved student engagement when theoretical concepts were linked to practical applications
3. **Industry Alignment:** Industry partners emphasized the improved alignment between graduate capabilities and job requirements
4. **Continuous Learning Mindset:** Development of a genuine commitment to lifelong learning among participants
5. **Innovation Culture:** Emergence of a more innovative and entrepreneurial campus culture

DISCUSSION

The findings of this research provide compelling evidence for the effectiveness of integrating skill-based learning into higher education curricula. The substantial improvements observed across multiple dimensions of student outcomes, industry satisfaction, and institutional effectiveness suggest that the proposed operative framework represents a viable solution to the persistent challenge of preparing graduates for contemporary workforce demands.

5.1 Theoretical Implications

The success of the intervention validates several key theoretical frameworks. First, the competency-based education model demonstrates its practical applicability in higher education contexts, supporting the work of Klein-Collins (2012) and extending it to diverse academic disciplines. The significant improvements in entrepreneurial intentions align with Morris et al. (2013) findings, confirming that structured entrepreneurship education can effectively cultivate entrepreneurial mindset.

The research also contributes to the growing body of literature on lifelong learning by demonstrating how institutional frameworks can foster continuous learning habits. The observed development of meta-cognitive skills and learning autonomy among participants supports Yorke's (2006) multi-dimensional model of employability, while extending it to include entrepreneurial capabilities.

5.2 Practical Implications

From a practical perspective, the research provides a roadmap for higher education institutions seeking to enhance graduate outcomes. The operative framework's four-component structure offers a systematic approach that can be adapted to various institutional contexts and academic disciplines. The significant improvements in industry satisfaction ratings suggest that such initiatives can strengthen university-industry partnerships and enhance institutional reputation.

The financial implications are also noteworthy. While the initial investment in curriculum redesign and industry partnerships requires substantial resources, the improved employment outcomes and reduced time-to-employment for graduates represent significant value creation for both students and institutions. The 28% increase in entrepreneurial ventures also suggests potential for economic impact at regional and national levels.

5.3 Addressing Implementation Challenges

The research identified several implementation challenges that must be addressed for successful adoption of the framework. Faculty resistance to curriculum change emerged as a significant barrier, requiring comprehensive professional development programs and institutional support systems. The need for ongoing industry engagement also presents logistical and financial challenges that institutions must carefully manage.

Technology infrastructure requirements represent another critical consideration. The integration of digital skills training and online learning platforms necessitates substantial technological investments and ongoing maintenance commitments. However, the research demonstrates that these investments yield significant returns in terms of student outcomes and institutional effectiveness.

5.4 Cultural and Contextual Considerations

The research revealed important cultural and contextual factors that influence framework implementation success. Institutions with strong industry connections and entrepreneurial cultures demonstrated more rapid adoption and greater outcomes improvement. This finding suggests that the framework may require adaptation to different institutional contexts and cultural settings.

The role of leadership support emerged as crucial for implementation success. Institutions where senior leadership actively championed the initiative showed significantly better outcomes compared to those where implementation was driven primarily by faculty or department-level initiatives. This finding has important implications for change management strategies in higher education.

5.5 Limitations and Future Research Directions

Several limitations of this research should be acknowledged. The 24-month study period, while substantial, may not capture long-term impacts of the intervention. Additionally, the focus on five universities, while providing valuable insights, limits the generalizability of findings to other institutional contexts and geographical regions.

The research also faced challenges in measuring some qualitative outcomes, particularly those related to innovation and creativity. Future research should develop more sophisticated measurement instruments for these critical 21st-century skills. Longitudinal studies tracking graduate careers over extended periods would provide valuable insights into the lasting impact of skill integration initiatives.

CONCLUSION

This research establishes a compelling case for the integration of skill-based learning into higher education curricula as a means of enhancing graduate employability and fostering entrepreneurship. The comprehensive evaluation of the proposed operative framework demonstrates significant improvements across multiple outcome dimensions, including technical competencies, soft skills, entrepreneurial intentions, and industry readiness.

The four-component framework comprising competency mapping, curriculum integration, industry partnerships, and continuous assessment provides a systematic approach that can be adapted to diverse institutional contexts. The statistical significance of outcomes across all measured variables, combined with large effect sizes, indicates not only the effectiveness but also the practical significance of the intervention.

Key contributions of this research include:

1. **Empirical Validation:** Providing robust empirical evidence for the effectiveness of skill integration in higher education
2. **Framework Development:** Creating a comprehensive operative framework that addresses multiple dimensions of skill development
3. **Implementation Guidance:** Offering practical insights for successful implementation across different institutional contexts
4. **Theoretical Advancement:** Contributing to the theoretical understanding of competency-based education and lifelong learning

The research demonstrates that higher education institutions can successfully bridge the gap between academic learning and industry requirements through systematic skill integration. The observed improvements in graduate outcomes, combined with enhanced industry satisfaction, suggest that such initiatives create value for all stakeholders in the education ecosystem.

However, successful implementation requires sustained commitment from institutional leadership, comprehensive faculty development programs, and ongoing investment in industry partnerships and technological infrastructure. The challenges identified in this research should be carefully considered by institutions contemplating similar initiatives.

The findings have important implications for educational policy makers, institutional leaders, and curriculum developers. The evidence suggests that skill integration should not be viewed as an optional enhancement but as an essential component of contemporary higher education. As the pace of technological change continues to accelerate, the ability to continuously develop new competencies will become increasingly critical for graduate success.

FUTURE SCOPE

The findings of this research open several avenues for future investigation and development. The evolving nature of skill requirements in the digital economy necessitates continuous research to ensure that educational frameworks remain relevant and effective.

7.1 Longitudinal Impact Studies

Future research should conduct extended longitudinal studies to assess the long-term career impacts of skill integration initiatives. Tracking graduates over 5-10 year periods would provide valuable insights into career progression, salary advancement, entrepreneurial success rates, and continuous learning behaviors. Such studies would help validate the lasting value of integrated skill development programs.

7.2 Technology-Enhanced Learning Platforms

The rapid advancement of educational technology presents opportunities for developing more sophisticated skill development platforms. Future research should explore the integration of artificial intelligence, virtual reality, and augmented reality technologies in skill training programs. These technologies could provide personalized learning experiences and simulate real-world challenges more effectively.

7.3 Global Comparative Studies

Conducting comparative studies across different countries and educational systems would provide insights into cultural and systemic factors that influence skill integration success. Such research could identify best practices from different regions and develop culturally adaptive frameworks for skill development.

7.4 Industry-Specific Adaptation

Different industries have unique skill requirements that continue to evolve. Future research should develop industry-specific adaptations of the general framework, particularly for emerging sectors such as renewable energy, biotechnology, and space technology. This would ensure that graduates are prepared for cutting-edge industries that will drive future economic growth.

7.5 Assessment and Credentialing Systems

The development of comprehensive assessment and credentialing systems for integrated skills represents a critical area for future research. Digital badges, blockchain-based credentials, and competency portfolios could provide more nuanced and verifiable documentation of graduate capabilities than traditional grading systems.

7.6 Faculty Development Programs

Research into effective faculty development programs for skill integration is urgently needed. Understanding how to prepare faculty members for competency-based teaching, industry collaboration, and continuous curriculum updating will be crucial for widespread adoption of skill integration frameworks.

7.7 Economic Impact Analysis

Comprehensive economic impact studies should be conducted to quantify the broader societal benefits of skill integration in higher education. Such studies could examine impacts on regional economic development, innovation ecosystems, and national competitiveness.

7.8 Artificial Intelligence and Skill Prediction

Future research should explore the use of artificial intelligence to predict emerging skill requirements and automatically update curriculum content. Machine learning algorithms could analyze job market trends, technological developments, and industry reports to provide early warnings about changing skill demands.

REFERENCES

1. Delors, J., Al Mufti, I., Amagi, I., Carneiro, R., Chung, F., Geremek, B., ... & Nanzhao, Z. (1996). Learning: The treasure within. UNESCO Publishing.
2. Klein-Collins, R. (2012). Competency-based degree programs in the US: Postsecondary credentials for measurable student learning and performance. Council for Adult and Experiential Learning.
3. Kuratko, D. F. (2005). The emergence of entrepreneurship education: Development, trends, and challenges. *Entrepreneurship Theory and Practice*, 29(5), 577-597.
4. Morris, M. H., Webb, J. W., Fu, J., & Singhal, S. (2013). A competency-based perspective on entrepreneurship education: Conceptual and empirical insights. *Journal of Small Business Management*, 51(3), 352-369.
5. National Association of Colleges and Employers. (2021). Career readiness competencies for the new graduate. NACE.
6. Organisation for Economic Co-operation and Development. (2021). OECD skills outlook 2021: Learning for life. OECD Publishing.
7. Perkmann, M., Tartari, V., McKelvey, M., Autio, E., Broström, A., D'Este, P., ... & Sobrero, M. (2013). Academic engagement and commercialisation: A review of the literature on university–industry relations. *Research Policy*, 42(2), 423-442.
8. World Economic Forum. (2020). The future of jobs report 2020. World Economic Forum.
9. Yorke, M. (2006). Employability in higher education: What it is-what it is not (Vol. 1). Higher Education Academy.